\(\int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx\) [270]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 214 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=-\frac {\left (6 a^4 A b-5 a^2 A b^3+2 A b^5-2 a^5 B-a^3 b^2 B\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 (a-b)^{5/2} (a+b)^{5/2} d}+\frac {A \text {arctanh}(\sin (c+d x))}{a^3 d}+\frac {b (A b-a B) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {b \left (5 a^2 A b-2 A b^3-3 a^3 B\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))} \]

[Out]

-(6*A*a^4*b-5*A*a^2*b^3+2*A*b^5-2*B*a^5-B*a^3*b^2)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^3/(a-b
)^(5/2)/(a+b)^(5/2)/d+A*arctanh(sin(d*x+c))/a^3/d+1/2*b*(A*b-B*a)*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))^2+
1/2*b*(5*A*a^2*b-2*A*b^3-3*B*a^3)*sin(d*x+c)/a^2/(a^2-b^2)^2/d/(a+b*cos(d*x+c))

Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {3079, 3134, 3080, 3855, 2738, 211} \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\frac {A \text {arctanh}(\sin (c+d x))}{a^3 d}+\frac {b (A b-a B) \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}+\frac {b \left (-3 a^3 B+5 a^2 A b-2 A b^3\right ) \sin (c+d x)}{2 a^2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}-\frac {\left (-2 a^5 B+6 a^4 A b-a^3 b^2 B-5 a^2 A b^3+2 A b^5\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 d (a-b)^{5/2} (a+b)^{5/2}} \]

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + b*Cos[c + d*x])^3,x]

[Out]

-(((6*a^4*A*b - 5*a^2*A*b^3 + 2*A*b^5 - 2*a^5*B - a^3*b^2*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]
])/(a^3*(a - b)^(5/2)*(a + b)^(5/2)*d)) + (A*ArcTanh[Sin[c + d*x]])/(a^3*d) + (b*(A*b - a*B)*Sin[c + d*x])/(2*
a*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) + (b*(5*a^2*A*b - 2*A*b^3 - 3*a^3*B)*Sin[c + d*x])/(2*a^2*(a^2 - b^2)^
2*d*(a + b*Cos[c + d*x]))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3079

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c +
d*Sin[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*
(m + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 -
d^2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n
, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3080

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {b (A b-a B) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {\int \frac {\left (2 A \left (a^2-b^2\right )-2 a (A b-a B) \cos (c+d x)+b (A b-a B) \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx}{2 a \left (a^2-b^2\right )} \\ & = \frac {b (A b-a B) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {b \left (5 a^2 A b-2 A b^3-3 a^3 B\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {\int \frac {\left (2 A \left (a^2-b^2\right )^2-a \left (4 a^2 A b-A b^3-2 a^3 B-a b^2 B\right ) \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )^2} \\ & = \frac {b (A b-a B) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {b \left (5 a^2 A b-2 A b^3-3 a^3 B\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {A \int \sec (c+d x) \, dx}{a^3}-\frac {\left (6 a^4 A b-5 a^2 A b^3+2 A b^5-2 a^5 B-a^3 b^2 B\right ) \int \frac {1}{a+b \cos (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )^2} \\ & = \frac {A \text {arctanh}(\sin (c+d x))}{a^3 d}+\frac {b (A b-a B) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {b \left (5 a^2 A b-2 A b^3-3 a^3 B\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}-\frac {\left (6 a^4 A b-5 a^2 A b^3+2 A b^5-2 a^5 B-a^3 b^2 B\right ) \text {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^3 \left (a^2-b^2\right )^2 d} \\ & = -\frac {\left (6 a^4 A b-5 a^2 A b^3+2 A b^5-2 a^5 B-a^3 b^2 B\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 (a-b)^{5/2} (a+b)^{5/2} d}+\frac {A \text {arctanh}(\sin (c+d x))}{a^3 d}+\frac {b (A b-a B) \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {b \left (5 a^2 A b-2 A b^3-3 a^3 B\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.25 (sec) , antiderivative size = 269, normalized size of antiderivative = 1.26 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\frac {\cos (c+d x) (B+A \sec (c+d x)) \left (-\frac {2 \left (-6 a^4 A b+5 a^2 A b^3-2 A b^5+2 a^5 B+a^3 b^2 B\right ) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{5/2}}-2 A \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+2 A \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {a^2 b (A b-a B) \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))^2}+\frac {a b \left (5 a^2 A b-2 A b^3-3 a^3 B\right ) \sin (c+d x)}{(a-b)^2 (a+b)^2 (a+b \cos (c+d x))}\right )}{2 a^3 d (A+B \cos (c+d x))} \]

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x])/(a + b*Cos[c + d*x])^3,x]

[Out]

(Cos[c + d*x]*(B + A*Sec[c + d*x])*((-2*(-6*a^4*A*b + 5*a^2*A*b^3 - 2*A*b^5 + 2*a^5*B + a^3*b^2*B)*ArcTanh[((a
 - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(5/2) - 2*A*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] +
 2*A*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (a^2*b*(A*b - a*B)*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c
 + d*x])^2) + (a*b*(5*a^2*A*b - 2*A*b^3 - 3*a^3*B)*Sin[c + d*x])/((a - b)^2*(a + b)^2*(a + b*Cos[c + d*x]))))/
(2*a^3*d*(A + B*Cos[c + d*x]))

Maple [A] (verified)

Time = 2.22 (sec) , antiderivative size = 302, normalized size of antiderivative = 1.41

method result size
derivativedivides \(\frac {-\frac {2 \left (\frac {-\frac {\left (6 A \,a^{2} b +A a \,b^{2}-2 A \,b^{3}-4 B \,a^{3}-B \,a^{2} b \right ) a b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 \left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}-\frac {b a \left (6 A \,a^{2} b -A a \,b^{2}-2 A \,b^{3}-4 B \,a^{3}+B \,a^{2} b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a -b \right )^{2}}}{{\left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b \right )}^{2}}+\frac {\left (6 A \,a^{4} b -5 A \,a^{2} b^{3}+2 A \,b^{5}-2 B \,a^{5}-B \,a^{3} b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{2 \left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{3}}-\frac {A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{3}}+\frac {A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{3}}}{d}\) \(302\)
default \(\frac {-\frac {2 \left (\frac {-\frac {\left (6 A \,a^{2} b +A a \,b^{2}-2 A \,b^{3}-4 B \,a^{3}-B \,a^{2} b \right ) a b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 \left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}-\frac {b a \left (6 A \,a^{2} b -A a \,b^{2}-2 A \,b^{3}-4 B \,a^{3}+B \,a^{2} b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a -b \right )^{2}}}{{\left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b \right )}^{2}}+\frac {\left (6 A \,a^{4} b -5 A \,a^{2} b^{3}+2 A \,b^{5}-2 B \,a^{5}-B \,a^{3} b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{2 \left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{3}}-\frac {A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{3}}+\frac {A \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{3}}}{d}\) \(302\)
risch \(\text {Expression too large to display}\) \(1191\)

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)/(a+cos(d*x+c)*b)^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(-2/a^3*((-1/2*(6*A*a^2*b+A*a*b^2-2*A*b^3-4*B*a^3-B*a^2*b)*a*b/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3-
1/2*b*a*(6*A*a^2*b-A*a*b^2-2*A*b^3-4*B*a^3+B*a^2*b)/(a+b)/(a-b)^2*tan(1/2*d*x+1/2*c))/(tan(1/2*d*x+1/2*c)^2*a-
b*tan(1/2*d*x+1/2*c)^2+a+b)^2+1/2*(6*A*a^4*b-5*A*a^2*b^3+2*A*b^5-2*B*a^5-B*a^3*b^2)/(a^4-2*a^2*b^2+b^4)/((a-b)
*(a+b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^(1/2)))-A/a^3*ln(tan(1/2*d*x+1/2*c)-1)+A/a^3*ln(ta
n(1/2*d*x+1/2*c)+1))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 665 vs. \(2 (199) = 398\).

Time = 13.01 (sec) , antiderivative size = 1400, normalized size of antiderivative = 6.54 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

[1/4*((2*B*a^7 - 6*A*a^6*b + B*a^5*b^2 + 5*A*a^4*b^3 - 2*A*a^2*b^5 + (2*B*a^5*b^2 - 6*A*a^4*b^3 + B*a^3*b^4 +
5*A*a^2*b^5 - 2*A*b^7)*cos(d*x + c)^2 + 2*(2*B*a^6*b - 6*A*a^5*b^2 + B*a^4*b^3 + 5*A*a^3*b^4 - 2*A*a*b^6)*cos(
d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(
d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) + 2*(A*a^8 - 3*A*a^
6*b^2 + 3*A*a^4*b^4 - A*a^2*b^6 + (A*a^6*b^2 - 3*A*a^4*b^4 + 3*A*a^2*b^6 - A*b^8)*cos(d*x + c)^2 + 2*(A*a^7*b
- 3*A*a^5*b^3 + 3*A*a^3*b^5 - A*a*b^7)*cos(d*x + c))*log(sin(d*x + c) + 1) - 2*(A*a^8 - 3*A*a^6*b^2 + 3*A*a^4*
b^4 - A*a^2*b^6 + (A*a^6*b^2 - 3*A*a^4*b^4 + 3*A*a^2*b^6 - A*b^8)*cos(d*x + c)^2 + 2*(A*a^7*b - 3*A*a^5*b^3 +
3*A*a^3*b^5 - A*a*b^7)*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*(4*B*a^7*b - 6*A*a^6*b^2 - 5*B*a^5*b^3 + 9*A*a
^4*b^4 + B*a^3*b^5 - 3*A*a^2*b^6 + (3*B*a^6*b^2 - 5*A*a^5*b^3 - 3*B*a^4*b^4 + 7*A*a^3*b^5 - 2*A*a*b^7)*cos(d*x
 + c))*sin(d*x + c))/((a^9*b^2 - 3*a^7*b^4 + 3*a^5*b^6 - a^3*b^8)*d*cos(d*x + c)^2 + 2*(a^10*b - 3*a^8*b^3 + 3
*a^6*b^5 - a^4*b^7)*d*cos(d*x + c) + (a^11 - 3*a^9*b^2 + 3*a^7*b^4 - a^5*b^6)*d), 1/2*((2*B*a^7 - 6*A*a^6*b +
B*a^5*b^2 + 5*A*a^4*b^3 - 2*A*a^2*b^5 + (2*B*a^5*b^2 - 6*A*a^4*b^3 + B*a^3*b^4 + 5*A*a^2*b^5 - 2*A*b^7)*cos(d*
x + c)^2 + 2*(2*B*a^6*b - 6*A*a^5*b^2 + B*a^4*b^3 + 5*A*a^3*b^4 - 2*A*a*b^6)*cos(d*x + c))*sqrt(a^2 - b^2)*arc
tan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) + (A*a^8 - 3*A*a^6*b^2 + 3*A*a^4*b^4 - A*a^2*b^6 + (
A*a^6*b^2 - 3*A*a^4*b^4 + 3*A*a^2*b^6 - A*b^8)*cos(d*x + c)^2 + 2*(A*a^7*b - 3*A*a^5*b^3 + 3*A*a^3*b^5 - A*a*b
^7)*cos(d*x + c))*log(sin(d*x + c) + 1) - (A*a^8 - 3*A*a^6*b^2 + 3*A*a^4*b^4 - A*a^2*b^6 + (A*a^6*b^2 - 3*A*a^
4*b^4 + 3*A*a^2*b^6 - A*b^8)*cos(d*x + c)^2 + 2*(A*a^7*b - 3*A*a^5*b^3 + 3*A*a^3*b^5 - A*a*b^7)*cos(d*x + c))*
log(-sin(d*x + c) + 1) - (4*B*a^7*b - 6*A*a^6*b^2 - 5*B*a^5*b^3 + 9*A*a^4*b^4 + B*a^3*b^5 - 3*A*a^2*b^6 + (3*B
*a^6*b^2 - 5*A*a^5*b^3 - 3*B*a^4*b^4 + 7*A*a^3*b^5 - 2*A*a*b^7)*cos(d*x + c))*sin(d*x + c))/((a^9*b^2 - 3*a^7*
b^4 + 3*a^5*b^6 - a^3*b^8)*d*cos(d*x + c)^2 + 2*(a^10*b - 3*a^8*b^3 + 3*a^6*b^5 - a^4*b^7)*d*cos(d*x + c) + (a
^11 - 3*a^9*b^2 + 3*a^7*b^4 - a^5*b^6)*d)]

Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{3}}\, dx \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))**3,x)

[Out]

Integral((A + B*cos(c + d*x))*sec(c + d*x)/(a + b*cos(c + d*x))**3, x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more de

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 481 vs. \(2 (199) = 398\).

Time = 0.34 (sec) , antiderivative size = 481, normalized size of antiderivative = 2.25 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\frac {\frac {{\left (2 \, B a^{5} - 6 \, A a^{4} b + B a^{3} b^{2} + 5 \, A a^{2} b^{3} - 2 \, A b^{5}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} \sqrt {a^{2} - b^{2}}} + \frac {A \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {A \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}} - \frac {4 \, B a^{4} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 6 \, A a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, B a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 5 \, A a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - B a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, A a b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, A b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 4 \, B a^{4} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 6 \, A a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, B a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 5 \, A a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - B a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, A a b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, A b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{6} - 2 \, a^{4} b^{2} + a^{2} b^{4}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )}^{2}}}{d} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

((2*B*a^5 - 6*A*a^4*b + B*a^3*b^2 + 5*A*a^2*b^3 - 2*A*b^5)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) +
arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*sqrt(a
^2 - b^2)) + A*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - A*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3 - (4*B*a^4*b*
tan(1/2*d*x + 1/2*c)^3 - 6*A*a^3*b^2*tan(1/2*d*x + 1/2*c)^3 - 3*B*a^3*b^2*tan(1/2*d*x + 1/2*c)^3 + 5*A*a^2*b^3
*tan(1/2*d*x + 1/2*c)^3 - B*a^2*b^3*tan(1/2*d*x + 1/2*c)^3 + 3*A*a*b^4*tan(1/2*d*x + 1/2*c)^3 - 2*A*b^5*tan(1/
2*d*x + 1/2*c)^3 + 4*B*a^4*b*tan(1/2*d*x + 1/2*c) - 6*A*a^3*b^2*tan(1/2*d*x + 1/2*c) + 3*B*a^3*b^2*tan(1/2*d*x
 + 1/2*c) - 5*A*a^2*b^3*tan(1/2*d*x + 1/2*c) - B*a^2*b^3*tan(1/2*d*x + 1/2*c) + 3*A*a*b^4*tan(1/2*d*x + 1/2*c)
 + 2*A*b^5*tan(1/2*d*x + 1/2*c))/((a^6 - 2*a^4*b^2 + a^2*b^4)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*
c)^2 + a + b)^2))/d

Mupad [B] (verification not implemented)

Time = 9.90 (sec) , antiderivative size = 6913, normalized size of antiderivative = 32.30 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\text {Too large to display} \]

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)*(a + b*cos(c + d*x))^3),x)

[Out]

((tan(c/2 + (d*x)/2)^3*(2*A*b^4 - 6*A*a^2*b^2 + B*a^2*b^2 - A*a*b^3 + 4*B*a^3*b))/((a^2*b - a^3)*(a + b)^2) -
(tan(c/2 + (d*x)/2)*(2*A*b^4 - 6*A*a^2*b^2 - B*a^2*b^2 + A*a*b^3 + 4*B*a^3*b))/((a + b)*(a^4 - 2*a^3*b + a^2*b
^2)))/(d*(2*a*b + tan(c/2 + (d*x)/2)^2*(2*a^2 - 2*b^2) + tan(c/2 + (d*x)/2)^4*(a^2 - 2*a*b + b^2) + a^2 + b^2)
) - (A*atan(((A*((8*tan(c/2 + (d*x)/2)*(4*A^2*a^10 + 8*A^2*b^10 + 4*B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*
A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6 - 48*A^2*a^5*b^5 - 52*A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*
b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 - 24*A*B*a^9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3))/(a^10*b + a
^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2) + (A*((8*(4*A*a^15 + 4*B*a^15 - 4*A*a
^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*a^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^
2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b))/(a^12*b + a^13 - a^6*
b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) + (8*A*tan(c/2 + (d*x)/2)*(8*a^15*b - 8*a^6*b
^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2
))/(a^3*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2))))/a^3)*1i)/a^3 +
(A*((8*tan(c/2 + (d*x)/2)*(4*A^2*a^10 + 8*A^2*b^10 + 4*B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 +
 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6 - 48*A^2*a^5*b^5 - 52*A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6
*b^4 + 4*B^2*a^8*b^2 - 24*A*B*a^9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3))/(a^10*b + a^11 - a^4*b^7
 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2) - (A*((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*
a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*a^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b
^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6
 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) - (8*A*tan(c/2 + (d*x)/2)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b
^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2))/(a^3*(a^10
*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2))))/a^3)*1i)/a^3)/((16*(4*A^3*b^
9 + 4*A*B^2*a^9 - 4*A^2*B*a^9 - 2*A^3*a*b^8 + 12*A^3*a^8*b - 18*A^3*a^2*b^7 + 13*A^3*a^3*b^6 + 36*A^3*a^4*b^5
- 26*A^3*a^5*b^4 - 34*A^3*a^6*b^3 + 24*A^3*a^7*b^2 - 20*A^2*B*a^8*b + A*B^2*a^5*b^4 + 4*A*B^2*a^7*b^2 - 2*A^2*
B*a^2*b^7 - 2*A^2*B*a^3*b^6 + 2*A^2*B*a^4*b^5 + 2*A^2*B*a^6*b^3 + 6*A^2*B*a^7*b^2))/(a^12*b + a^13 - a^6*b^7 -
 a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) + (A*((8*tan(c/2 + (d*x)/2)*(4*A^2*a^10 + 8*A^2*b^
10 + 4*B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6 - 48*A^2*a^5*b^
5 - 52*A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 - 24*A*B*a^9*b - 4*A*B*a^3*
b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 -
 3*a^9*b^2) + (A*((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*a^10
*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b^2 -
 12*A*a^14*b - 4*B*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b
^2) + (8*A*tan(c/2 + (d*x)/2)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*
a^11*b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2))/(a^3*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^
7*b^4 - 3*a^8*b^3 - 3*a^9*b^2))))/a^3))/a^3 - (A*((8*tan(c/2 + (d*x)/2)*(4*A^2*a^10 + 8*A^2*b^10 + 4*B^2*a^10
- 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6 - 48*A^2*a^5*b^5 - 52*A^2*a^6*b
^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 - 24*A*B*a^9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*
b^5 + 8*A*B*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2) - (A
*((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*a^10*b^5 + 6*A*a^11*
b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b^2 - 12*A*a^14*b - 4
*B*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) - (8*A*tan(c
/2 + (d*x)/2)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^
12*b^4 - 32*a^13*b^3 - 8*a^14*b^2))/(a^3*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^
3 - 3*a^9*b^2))))/a^3))/a^3))*2i)/(a^3*d) - (atan((((-(a + b)^5*(a - b)^5)^(1/2)*((8*tan(c/2 + (d*x)/2)*(4*A^2
*a^10 + 8*A^2*b^10 + 4*B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6
 - 48*A^2*a^5*b^5 - 52*A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 - 24*A*B*a^
9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b
^4 - 3*a^8*b^3 - 3*a^9*b^2) - ((-(a + b)^5*(a - b)^5)^(1/2)*((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b
^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*a^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7 +
2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*
a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) - (4*tan(c/2 + (d*x)/2)*(-(a + b)^5*(a - b)^5)^(1/2)*(2*B*a^5 -
 2*A*b^5 + 5*A*a^2*b^3 + B*a^3*b^2 - 6*A*a^4*b)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 -
 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2))/((a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b
^6 + 10*a^9*b^4 - 5*a^11*b^2)*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b
^2)))*(2*B*a^5 - 2*A*b^5 + 5*A*a^2*b^3 + B*a^3*b^2 - 6*A*a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6
+ 10*a^9*b^4 - 5*a^11*b^2)))*(2*B*a^5 - 2*A*b^5 + 5*A*a^2*b^3 + B*a^3*b^2 - 6*A*a^4*b)*1i)/(2*(a^13 - a^3*b^10
 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)) + ((-(a + b)^5*(a - b)^5)^(1/2)*((8*tan(c/2 + (d*x)/2)*(
4*A^2*a^10 + 8*A^2*b^10 + 4*B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^
4*b^6 - 48*A^2*a^5*b^5 - 52*A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 - 24*A
*B*a^9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*
a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2) + ((-(a + b)^5*(a - b)^5)^(1/2)*((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*
a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*a^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b
^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6
 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) + (4*tan(c/2 + (d*x)/2)*(-(a + b)^5*(a - b)^5)^(1/2)*(2*B*
a^5 - 2*A*b^5 + 5*A*a^2*b^3 + B*a^3*b^2 - 6*A*a^4*b)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*
b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2))/((a^13 - a^3*b^10 + 5*a^5*b^8 - 10*
a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*
a^9*b^2)))*(2*B*a^5 - 2*A*b^5 + 5*A*a^2*b^3 + B*a^3*b^2 - 6*A*a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7
*b^6 + 10*a^9*b^4 - 5*a^11*b^2)))*(2*B*a^5 - 2*A*b^5 + 5*A*a^2*b^3 + B*a^3*b^2 - 6*A*a^4*b)*1i)/(2*(a^13 - a^3
*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)))/((16*(4*A^3*b^9 + 4*A*B^2*a^9 - 4*A^2*B*a^9 - 2*A^
3*a*b^8 + 12*A^3*a^8*b - 18*A^3*a^2*b^7 + 13*A^3*a^3*b^6 + 36*A^3*a^4*b^5 - 26*A^3*a^5*b^4 - 34*A^3*a^6*b^3 +
24*A^3*a^7*b^2 - 20*A^2*B*a^8*b + A*B^2*a^5*b^4 + 4*A*B^2*a^7*b^2 - 2*A^2*B*a^2*b^7 - 2*A^2*B*a^3*b^6 + 2*A^2*
B*a^4*b^5 + 2*A^2*B*a^6*b^3 + 6*A^2*B*a^7*b^2))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3
*a^10*b^3 - 3*a^11*b^2) - ((-(a + b)^5*(a - b)^5)^(1/2)*((8*tan(c/2 + (d*x)/2)*(4*A^2*a^10 + 8*A^2*b^10 + 4*B^
2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6 - 48*A^2*a^5*b^5 - 52*A^
2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 - 24*A*B*a^9*b - 4*A*B*a^3*b^7 + 2*A
*B*a^5*b^5 + 8*A*B*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^
2) - ((-(a + b)^5*(a - b)^5)^(1/2)*((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A*a
^9*b^6 - 36*A*a^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*b^
3 - 6*B*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a
^10*b^3 - 3*a^11*b^2) - (4*tan(c/2 + (d*x)/2)*(-(a + b)^5*(a - b)^5)^(1/2)*(2*B*a^5 - 2*A*b^5 + 5*A*a^2*b^3 +
B*a^3*b^2 - 6*A*a^4*b)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^
5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2))/((a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*
b^2)*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2)))*(2*B*a^5 - 2*A*b^5
+ 5*A*a^2*b^3 + B*a^3*b^2 - 6*A*a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2
)))*(2*B*a^5 - 2*A*b^5 + 5*A*a^2*b^3 + B*a^3*b^2 - 6*A*a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 +
10*a^9*b^4 - 5*a^11*b^2)) + ((-(a + b)^5*(a - b)^5)^(1/2)*((8*tan(c/2 + (d*x)/2)*(4*A^2*a^10 + 8*A^2*b^10 + 4*
B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6 - 48*A^2*a^5*b^5 - 52*
A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 - 24*A*B*a^9*b - 4*A*B*a^3*b^7 + 2
*A*B*a^5*b^5 + 8*A*B*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*
b^2) + ((-(a + b)^5*(a - b)^5)^(1/2)*((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A
*a^9*b^6 - 36*A*a^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*
b^3 - 6*B*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3
*a^10*b^3 - 3*a^11*b^2) + (4*tan(c/2 + (d*x)/2)*(-(a + b)^5*(a - b)^5)^(1/2)*(2*B*a^5 - 2*A*b^5 + 5*A*a^2*b^3
+ B*a^3*b^2 - 6*A*a^4*b)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*
b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2))/((a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^1
1*b^2)*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2)))*(2*B*a^5 - 2*A*b^
5 + 5*A*a^2*b^3 + B*a^3*b^2 - 6*A*a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b
^2)))*(2*B*a^5 - 2*A*b^5 + 5*A*a^2*b^3 + B*a^3*b^2 - 6*A*a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6
+ 10*a^9*b^4 - 5*a^11*b^2))))*(-(a + b)^5*(a - b)^5)^(1/2)*(2*B*a^5 - 2*A*b^5 + 5*A*a^2*b^3 + B*a^3*b^2 - 6*A*
a^4*b)*1i)/(d*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2))